ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C.-K. Chris Wang, Thomas E. Blue, Reinhard Gahbauer
Nuclear Technology | Volume 84 | Number 1 | January 1989 | Pages 93-107
Technical Paper | Radioisotopes and Isotope Separation | doi.org/10.13182/NT89-A34199
Articles are hosted by Taylor and Francis Online.
A neutronic study of an accelerator-based neutron irradiation facility (ANIF) for boron neutron capture therapy (BNCT) was performed using three-dimensional Monte Carlo transport calculations. The major components of the ANIF are a radio-frequency quad-rupole proton accelerator, a 7Li target, and a moderator assembly. Neutrons are generated by bombarding the 7Li target with 2.5-MeV protons. The neutrons emerging from the 7Li target are too energetic to be used for BNCT and must therefore be moderated. Calculations show that, among all materials for the ANIF, beryllia (BeO) and heavy water (D2O) are the best moderators. Between them, beryllia provides better neutron spectra, but D2O gives higher neutron intensities. Adding alumina (Al2O3) to D2O improves the neutron spectra, but it also increases gamma-ray contamination. The overall performance of an ANIF was evaluated for a moderator assembly composed of a 20.0-cm-high x 12.5-cm-radius beryllia cylinder reflected by 30.0 cm of alumina. Calculations show that the addition of the alumina reflector doubles the epithermal neutron intensity at the irradiation port. A 0.05 g/cm2 thick layer of 6Li was placed between the beryllia moderator and the alumina reflector to reduce the number of thermal neutrons escaping from the beryllia to the alumina, and therefore the capture gamma rays produced by aluminum in the reflector. Also, a 0.025 g/cm2 thick layer of 6Li was placed at the irradiation port of the moderator assembly to remove thermal neutrons from the field. Finally, a neutron shield of 10.0-cm-thick D2O wrapped with 6LiF was placed around the moderator assembly except at the irradiation port. The useful neutron flux (which is the flux of neutrons with energies greater than ∼1 eV) at the irradiation point, which is in front of the moderator assembly, is 4.87 x 108 n/cm2.s for a 10-mA proton beam. The corresponding total absorbed dose rates for neutron and gamma rays are 1.9 and 0.64 cGy/min, respectively. The ratio of the total neutron absorbed dose rate to the useful neutron flux is 6.5 x 10-11 cGy/n·cm-2, which is slightly higher than, but comparable to, the value of this ratio that has been estimated for moderated reactor neutron fields. The maximum usable depth (MUD) in a head phantom is calculated to be ∼7.5 cm assuming that the 10B concentration is 30 µg/g in tumor and 10 µg/g in blood, and the singlesession treatment time is 1.6 h. If the beryllia cylinder in the moderator assembly were replaced by a 15.0-cm-high x 12.5-cm-radius cylinder of heavy water, the treatment time would be reduced to 30 min, at the price of a higher entrance neutron dose to normal tissue and thus lower therapeutic gains and MUD.