ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Heinz Nabielek, Werner Schenk, Werner Heit, Alfred-Wilhelm Mehner, Daniel T. Goodin
Nuclear Technology | Volume 84 | Number 1 | January 1989 | Pages 62-81
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT89-A34196
Articles are hosted by Taylor and Francis Online.
Coated particles embedded in graphitic elements are the fuel for the High-Temperature Reactor (HTR). Experimental investigations of the performance of particles at extremely high temperatures have been conducted to achieve an understanding of coating failure mechanisms and to establish the data base for safety and risk analyses of hypothetical accidents in large-and medium-sized HTRs. The primary mechanism for coating failure and fission product release in the 1900 to 2500°C temperature range is thermal decomposition of silicon carbide (SiC). Heating tests have provided the activation energy of this process and the correlation of SiC decomposition with coating failure and subsequent fission product release. The process of fission product release proceeds in several stages. A certain amount of SiC removal at high temperatures leads to SiC deterioration, which renders a fraction of particles permeable to cesium and strontium. During 50°C/h ramped heating tests, the cesium release approaches 100% at 2500°C. With the onset of SiC failure, the release process of xenon, krypton, and iodine via diffusion through the pyrocarbon (PyC) is initiated. Under all heating conditions examined, krypton release is significantly delayed relative to cesium release due to the higher diffusivity of cesium in PyC. In the intermediate temperature range of 1600 to 1700°C (the maximum temperature in small, modular HTRs), SiC decomposition rates are negligible, and coated particle fuels retain all safety-relevant fission products.