ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Marco Cigarini, Mario Dalle Donne
Nuclear Technology | Volume 84 | Number 1 | January 1989 | Pages 33-53
Technical Paper | Nuclear Safety | doi.org/10.13182/NT89-A34194
Articles are hosted by Taylor and Francis Online.
Calculations of the reflooding phase during a loss-of-coolant accident (LOCA) have been performed for two homogeneous advanced pressurized water reactors (APWRs) with a wide [pitch-to-diameter (p/d) ratio = 1.2] and a tighter (p/d = 1.123) fuel rod lattice as well as for a reference 1300-MW(electric) pressurized water reactor (PWR). The FLUT computer code, developed by the Gesellschaft für Reaktorsicherheit in Garching for the reflooding phase of a PWR, has been improved: A new criterion for the determination of the onset of the upper quench front and a new water droplet model for the dispersed flow film boiling have been introduced in the code, as well as new friction factor correlations more suitable for the core geometry of an APWR. Finally, the interfacial drag coefficients between steam and water are not independent of the geometry as in FLUT, but rather the flow channel geometry is taken into account. The new version of the code (FLUT-FDWR) has been tested on the base of various reflooding experiments in PWR (FLECHT, FEBA, SEFLEX) as well as APWR (FLORESTAN) core geometries. In all the cases investigated, the FLUT-FDWR predictions are relatively good and generally better than with the original FLUT version. The reactor calculations with FLUT-FDWR indicate that the maximum cladding temperatures in the APWRs during the reflooding phase are lower than those for the PWR. This is due to the lower temperatures for the APWRs at the beginning of the reflooding phase and to the higher isostatic water pressure above the APWR cores, which are shorter and therefore placed in a lower position inside the reactor pressure vessel. The cladding temperatures calculated for the PWR and the two APWRs are quite acceptable and considerably lower than those calculated during the blowdown phase of the LOCA.