ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
A. A. Argekar, S. K. Thulasidas, M. J. Kulkarni, M. K. Bhide, R. Sampathkumar, S. V. Godbole, V. C. Adya, B. A. Dhawale, B. Rajeshwari, Neelam Goyal, P. J. Purohit, A. G. Page, A. G. I. Dalvi, T. R. Bangia, M. D. Sastry, P. R. Natarajan
Nuclear Technology | Volume 84 | Number 2 | February 1989 | Pages 196-204
Technical Paper | Analyse | doi.org/10.13182/NT89-A34187
Articles are hosted by Taylor and Francis Online.
Uranium-aluminum alloys with a significant enrichment of uranium with 233U or 235U serve as nuclear fuels in research reactors. The quality assurance of this fuel requires, among other things, precise knowledge that all trace metal constituents that affect neutron economy, fuel integrity, and fuel fabrication process parameters are well within the specification limits. Trace metal characterization of 233U-Al alloy has been carried out by atomic spectrometry. The trace metal constituents of interest are grouped into common metals (silver, boron, calcium, cadmium, cobalt, chromium, copper, iron, magnesium, manganese, molybdenum, sodium, nickel, lead, silicon, tin, titanium, vanadium, tungsten, and zinc) and lanthanides (cerium, dysprosium, europium, gadolinium, holmium, lutetium, samarium, and terbium). The elements yttrium and zirconium are grouped with the latter in view of the chemical separation procedure used. The alloy samples are dissolved in 6 M HCl and evaporated to dryness with nitric acid, and the residue is ignited to oxide. The common metals other than silver are determined in the oxide samples using carrier excitation of the analyte spectra obtained using a computer-controlled multichannel direct reading spectrometer. Electrothermal atomization atomic absorption spectrometry is used for determining silver, using the nitric acid solution of the alloy. The rare earth elements yttrium and zirconium are determined after separation from the U-Al matrix, using a sequence of chemical procedures. In the first stage, uranium is separated by solvent extraction using a TnOA/xylene/HCl system and in the second stage aluminum is separated as sodium-aluminate. The trace elements are determined by a dc arc emission spectrographic method after chemical separation. Of these, dysprosium, europium, gadolinium, and samarium are determined by inductively coupled plasma-atomic emission spectrometry also. These methods are found to be quite adequate for the requirements of U-Al alloy fuel samples. Typical detection limits of these analytes varied in the 0.01-to 1.25-µg range. The precision varied in the 10 to 35% range. The waste generated in these processes has been treated for quantitative recovery of 233U.