ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
David A. Petti
Nuclear Technology | Volume 84 | Number 2 | February 1989 | Pages 128-151
Technical Paper | Nuclear Safety | doi.org/10.13182/NT89-A34183
Articles are hosted by Taylor and Francis Online.
Silver-indium-cadmium (Ag-In-Cd) control rod behavior in severe reactor accidents is examined with a goal of improving the methodology used to estimate reactor accident source terms. Control rod behavior in both in-pile and out-of-pile experiments is reviewed. A mechanistic model named VAPOR is developed that calculates the downward relocation and simultaneous vaporization behavior of the Ag-In-Cd alloy expected after control rod failure in a severe reactor accident. VAPOR is used to predict the release of silver, indium, and cadmium vapors expected in the Power Burst Facility (PBF) severe fuel damage (SFD) 1-4 experiment. In addition, a sensitivity study is performed to examine the effects of system pressure and flow rate on control rod vapor release. Although cadmium is found to be the most volatile constituent of the alloy, all of the calculations predict that the rapid relocation of the alloy down to cooler portions of the core results in a limited release for all three control rod alloy vapors. Results of the control rod and aerosol behavior in PBF test SFD 1-4 are presented. VAPOR calculations are found to compare much better with the control rod material release in test SFD 1-4 than empirical models that do not consider relocation of the alloy away from the hotter portions of the core. The timing and magnitude of control rod material release and the potential for control rod aerosol/fission product interactions during the early phase of a severe accident are dependent on the system pressure. A better understanding of control rod material behavior during the later in-vessel phase of the accident is needed to define more accurately both the magnitude of the aerosol source and the initial composition of molten material exiting the vessel in the event of lower vessel head failure.