ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Nicholas T. Saltos,* Richard N. Christensen, Tunc Aldemir
Nuclear Technology | Volume 83 | Number 1 | October 1988 | Pages 93-109
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34178
Articles are hosted by Taylor and Francis Online.
A methodology is presented to determine the transient temperature distributions in fuel bundles under loss-of-coolant-accident (LOCA) conditions using a recently developed variational technique for the solution of radial-azimuthal heat conduction in the fuel rods and the modified view factor concept proposed by Uchida and Nakamura to model the radiative heat transfer between the rods. The variational technique is based on the Lebon-Labermont restricted variational principle and represents the temperature distribution in the rods at a given time during the LOCA via parabolic and circular trial functions in the radial and azimuthal directions, respectively. The methodology is implemented to a 4 × 4 boiling water reactor fuel bundle under typical LOCA conditions to investigate the effects of changes in rod heat transfer characteristics and simplifying modeling assumptions on predicted rod temperature distributions. The results show that these effects depend on the rod location in the assembly and LOCA phase under consideration and indicate that same degree of modeling detail may not be necessary for all the rods in the bundle at all times during the LOCA. An important advantage of the methodology is that it selects the optimum number of trial functions for each rod and for each time step in the simulation to reduce the computation time without compromising solution accuracy. Other advantages are that (a) the variational technique is faster than finite difference techniques for comparable accuracy and uses the same algorithm for one-dimensional radial and two-dimensional solutions, and (b) formulation of the heat conduction problem in the rods is compatible with the modular accident analysis codes already in use in the nuclear industry.