ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Nikolay Ivanov Kolev
Nuclear Technology | Volume 83 | Number 1 | October 1988 | Pages 65-80
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34176
Articles are hosted by Taylor and Francis Online.
High-pressure gas injection into a low-pressure liquid pool with a free surface in cylindrical geometry with internals was numerically simulated using the computer code IVA2/005. Bubble formation and pressure history as a function of time were predicted and compared with the experimental observation for a 0.6-MPa pressure source. A comparison with the previous prediction of a 1.1-MPa pressure source experiment is made. Numerical diffusion and flow pattern prediction influence the gas propagation, which influences in turn the sharpness of the predicted bubble and water surface and the pressure history in time. The same geometry, but with a gas, was computationally simulated. The comparison proves that the code integrator works well without a constitutive package. Methods to measure the reduction of numerical diffusion are proposed. Comparison with the tree acoustic experiments shows that IVA2 can simulate pressure wave phenomena in two-phase two-component mixtures with strong nonhomogeneity.