ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Herbert Wieczorek, Bernhard Oser
Nuclear Technology | Volume 83 | Number 1 | October 1988 | Pages 49-55
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT88-A34174
Articles are hosted by Taylor and Francis Online.
At the Eurochemic site, 800 kg of combustible alpha waste containing ∼7 kg of plutonium were treated from March 1983 to July 1985 with the aim of concentrating the plutonium by oxidating the waste and converting it into a soluble form so that the established purification processes could be applied. In a batch process, shredded waste is oxidized with nitric acid in sulfuric acid. The digester content is then kept for several hours at digestion temperature to complete the dissolution of plutonium dioxide. The cold digester content is then filtered and the plutonium-containing filter cake is sent to the plutonium purification system. The off-gases generated are freed from the acids by scrubbing. The process is demonstrated in a plant with a daily throughput of 10 kg of waste. For the oxidation of waste and the dissolution of plutonium dioxide, a ring-type digester made of technical glass is used. The following principal results have been obtained: 1. Complete oxidation of the waste material is achieved within 15 min at a digester acid temperature of 250°C under oxidizing conditions provided by nitric acid. 2. At 250°C and with constant stirring of the digester content, a plutonium oxide to plutonium sulfate conversion rate of up to 99% is obtained within 8 h. 3. The average waste throughput achieved has been 4.1 kg per run (maximum of 10.4 kg). The plutonium decontamination factors were 1010 for the cleaned off-gas and 106 for the liquid secondary waste.