ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Browns Ferry’s reactors receive subsequent license renewals
The operating licenses for the three boiling water reactors at Browns Ferry nuclear power plant, in Athens, Ala., have each been renewed by the Nuclear Regulatory Commission for an additional 20 years. The reactors, operated by the Tennessee Valley Authority, are now licensed to operate until December 2053 for Unit 1, June 2054 for Unit 2, and July 2056 for Unit 3.
Scott A. Comes, Paul J. Turinsky
Nuclear Technology | Volume 83 | Number 1 | October 1988 | Pages 31-48
Technical Paper | Fuel Cycle | doi.org/10.13182/NT88-A34173
Articles are hosted by Taylor and Francis Online.
A methodology has been developed for determining the family of near-optimum fuel management schemes that minimize the levelized fuel cycle costs of a light water reactor over a multicycle planning horizon. Feed batch enrichments and sizes, burned batches to reinsert, and burnable poison loadings are determined for each cycle in the planning horizon. Flexibility in the methodology includes the capability to assess the economic benefits of various partially burned batch reload strategies as well as the effects of using split feed enrichments and enrichment palettes. Constraint limitations are imposed on feed enrichments, discharge burnups, moderator temperature coefficient, and cycle energy requirements. The methodology, incorporated into a code named OCEON, uses a zero-dimensional reactor physics model and a rapid fuel cycle cost routine to select minimum cost cycling schemes that satisfy all constraints. These candidate schemes are then examined with a two-dimensional nodal reactor physics model to more accurately calculate feed enrichments, batch burnups, and fuel cycle costs. The use of Monte Carlo integer programming to direct the optimization process allows for the determination of a family of low cost schemes from which the fuel manager can select the strategy that best fits his needs.