ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Jorma Jokiniemi
Nuclear Technology | Volume 83 | Number 1 | October 1988 | Pages 16-23
Technical Paper | Nuclear Safety | doi.org/10.13182/NT88-A34171
Articles are hosted by Taylor and Francis Online.
Fission products and other compounds released during severe nuclear power plant accidents will form aerosol particles, which include water-soluble compounds such as cesium hydroxide (CsOH), cesium carbonate, and cesium iodide. These hygroscopic particles will grow in a humid environment, and thus their settling rate is increased significantly at high relative humidities. This paper evaluates the hygroscopicity of CsOH and other water-soluble compounds released under severe accident conditions. The effect was incorporated into the kinetic particle growth model based on coupled mass and heat transport to evaluate the growth rates of single particles at different atmospheric conditions. Finally, the kinetic growth model for hygroscopic particles was included in the NAUA aerosol code to predict the general behavior of aerosols released into the containment atmosphere. A sensitivity analysis of this model was carried out to guide further work on important parameters and to decrease computing time. It is concluded that hygroscopic properties of radioactive cesium can, in favorable conditions, suppress the release of radioactive materials (source term) by orders of magnitude.