ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Tien-Ko Wang, Szu-Li Chang, Shi-Ping Teng
Nuclear Technology | Volume 83 | Number 1 | October 1988 | Pages 5-15
Technical Paper | Nuclear Safety | doi.org/10.13182/NT88-A34170
Articles are hosted by Taylor and Francis Online.
Using as a starting base the high-density spent-fuel storage racks to be put into the Chinshan and Kuo-shang nuclear power plants, a series of criticality analyses with various combinations of fuel assemblies and storage rack designs were performed using an AMPX-KENO/XSDRNPM computer code package. The calculated k∞ value for the storage pools in the two subject plants using Boral (0.013 g/cm2 10B) poisoned rack lattices and 3.2 wt% enriched fuel assemblies is 0.900 under conservative assumptions. Considering all the calculation biases and statistical and manufacturing uncertainties, the maximum k∞ value is estimated to be 0.929 under normal storage conditions. Variation in water temperature and density or abnormal positioning of fuel assemblies will result only in a negative effect on value. The deviation of the calculated k∞ values between the one-dimensional Sn XSDRNPM code and the KENO-IV code is within the normal Monte Carlo variations. Based on XSDRNPM calculations,K∞ values and the associated uncertainties due to fuel and rack manufacturing tolerances are tabulated. These interpolations can be used for the estimation of the value for any particular fuel and rack combination based on the tabulated data.