ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Marzano sworn in as NRC commissioner
Marzano
Matthew Marzano became the newest member of the Nuclear Regulatory Commission when he was officially sworn into office by chair Christopher Hanson this week.
The nuclear engineer and former reactor operator was confirmed last month in a 50–45 vote in the U.S. Senate. Last July, President Biden nominated Marzano to serve on the commission, which is tasked with formulating policies, developing regulations, issuing orders, and resolving legal matters.
Marzano’s term expires June 30, 2028.
John B. Rajan, Romesh Kumar, Donald R. Vissers
Nuclear Technology | Volume 83 | Number 2 | November 1988 | Pages 205-211
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT88-A34162
Articles are hosted by Taylor and Francis Online.
This study was conducted to develop improved treatment/disposal techniques for waste reactive metals. The basic approach considered was to convert the reactive metal (primarily sodium, with small quantities of radioactive and nonradioactive contaminants) to a glass form by reacting it primarily with silica sand, along with other minor additives to impart mechanical and chemical integrity to the waste form. A high-soda silicate glass was selected as the most desirable glass form for waste sodium disposal; however, it was found that small quantities of other additives would be necessary to impart acceptable resistance to leaching by groundwaters and other environmental stresses. Differential thermal analyses (DTA) with varying compositions of sodium oxide, silicon dioxide, calcium oxide, and magnesium oxide showed that the primary glass-forming reactions occur at <300°C. For the well-mixed samples used in the DTA tests, there were no additional thermal effects as the temperature was raised to 1260° C, indicating that the glass-forming reaction was essentially completed at the low temperature. Samples of different glasses were produced in a laboratory furnace to determine qualitative glass characteristics. Samples of sodium disilicate glass were tested for teachability of sodium by water. This particular glass had a relatively high sodium leach rate of 0.73 × 10−2 μg.mm−2.min−1 at room temperature in pure water. A conceptual one-step process for waste sodium conversion was designed, incorporating a low-g, low-pressure-drop, high-temperature cyclone as the reaction vessel as well as the reaction product separator.