ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Tsuyoshi Misawa, Seiji Shiroya, Keiji Kanda
Nuclear Technology | Volume 83 | Number 2 | November 1988 | Pages 162-170
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34157
Articles are hosted by Taylor and Francis Online.
A criticality safety study on a light water moderated and reflected coupled core loaded with highly enriched uranium fuel was performed in the Kyoto University Critical Assembly. The critical mass and neutron flux distribution were measured systematically as a function of the separation distance between the two cores, varying the H/235U atomic ratio (i.e., the moderator-to-fuel volume ratio). These data were analyzed with the SRAC code system to assess the capability of diffusion theory to analyze the coupled-core system. It was found that the critical mass of the coupled core showed the minimum when the two cores were separated by a certain distance depending on the neutron spectrum in the core region. The neutron flux peak value at the water gap region reached the maximum when the separation distance was 5 to 6 cm. The results calculated with the diffusion code installed in the SRAC system agreed well with the experimental data.