ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Masahiro Matsumura
Nuclear Technology | Volume 83 | Number 2 | November 1988 | Pages 134-161
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34156
Articles are hosted by Taylor and Francis Online.
The performance of pressurized water reactor (PWR) power plants is evaluated through analysis of power generation records, and directions are given in which measures might be effectively sought for further improvement of plant performance and productivity. The boundary between what has already been achieved in the performance of such plants and what remains to be done in development and demonstration is clearly identified. To supplement the traditionally adopted “capacity factor” (average power/nominal capacity) for assessing the improvements gained in the performance of uprated fuels and reactor cores, additional new yardsticks are proposed to represent the productivity of nuclear fuel and the reactor core. For evaluating the performance of fuel, the proposed variable is based on the correlation between specific power and annual core average burnup, i.e., thermal power and annual heat generation per unit mass of fuel. Similarly for the reactor core, the variable is based on the correlation between thermal power and heat generation per unit core volume and per unit area of core cross section. The advantages of adopting the proposed variables are discussed. Operating experience with PWR plants indicates that the relatively short service life of nuclear fuel, compared with the core structure and other reactor components, has permitted reliable, effective service of uprated fuel in high-performance plants to be demonstrated over periods extending beyond the service life of individual fuels. This is not the case, however, with the core structure and other reactor components: Most existing plants have been in service for less than half of the expected service life of these components, therefore data available today are insufficient for evaluation of their long-term performance. An analysis is presented on possible repercussions to be expected from the current trend in development, which tends toward higher core power rating, and it is pointed out that certain plant components will possibly come to be exposed to increasingly severe thermal conditions, which calls for further efforts in development and demonstration to ensure their continued reliability in service.