ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Joseph O. Erb, James G. Miller
Nuclear Technology | Volume 83 | Number 3 | December 1988 | Pages 367-373
Technical Paper | Fifth International Retran Meeting / Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34149
Articles are hosted by Taylor and Francis Online.
The rod ejection transient is a postulated Condition IV event initiated by the mechanical failure of a control rod mechanism pressure housing. Such a failure results in the rapid ejection of a rod cluster control assembly from the core, followed by a fast reactivity insertion. A severe asymmetric core power distribution may result, possibly leading to fuel rod damage. Reactor protection for the transient is provided by negative reactivity feedback effects and by reactor trips on high neutron flux levels. This transient has been modeled for Virginia Electric and Power Company’s Surry and North Anna nuclear power stations using RETRAN-02. The analysis is performed in two parts. First, the core average power history is calculated using a single-loop model with point kinetics and three axially stacked core control volumes. The ejected rod’s reactivity is inserted linearly over 0.1 s. The negative reactivity feedback effects due to Doppler and moderator temperature changes and the reactor trip are also modeled. The effect of the locally peaked core flux shape, omitted by the nominal point kinetics model, is approximated by applying a conservative power weighting factor to the Doppler reactivity feedback. The core average power history is adjusted to represent peak core power conditions and input to the hot spot thermal-hydraulic analysis model. The hot spot model, which represents a single fuel rod at the core’s peak power, predicts maximum fuel enthalpy and temperature transients. This model has two control volumes, one for the hot spot location and the second for a sink for flow from the hot channel. From these results, the amount of fuel damage and the radiological consequences can be assessed.