ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Joseph O. Erb, James G. Miller
Nuclear Technology | Volume 83 | Number 3 | December 1988 | Pages 367-373
Technical Paper | Fifth International Retran Meeting / Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34149
Articles are hosted by Taylor and Francis Online.
The rod ejection transient is a postulated Condition IV event initiated by the mechanical failure of a control rod mechanism pressure housing. Such a failure results in the rapid ejection of a rod cluster control assembly from the core, followed by a fast reactivity insertion. A severe asymmetric core power distribution may result, possibly leading to fuel rod damage. Reactor protection for the transient is provided by negative reactivity feedback effects and by reactor trips on high neutron flux levels. This transient has been modeled for Virginia Electric and Power Company’s Surry and North Anna nuclear power stations using RETRAN-02. The analysis is performed in two parts. First, the core average power history is calculated using a single-loop model with point kinetics and three axially stacked core control volumes. The ejected rod’s reactivity is inserted linearly over 0.1 s. The negative reactivity feedback effects due to Doppler and moderator temperature changes and the reactor trip are also modeled. The effect of the locally peaked core flux shape, omitted by the nominal point kinetics model, is approximated by applying a conservative power weighting factor to the Doppler reactivity feedback. The core average power history is adjusted to represent peak core power conditions and input to the hot spot thermal-hydraulic analysis model. The hot spot model, which represents a single fuel rod at the core’s peak power, predicts maximum fuel enthalpy and temperature transients. This model has two control volumes, one for the hot spot location and the second for a sink for flow from the hot channel. From these results, the amount of fuel damage and the radiological consequences can be assessed.