ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Steven P. Nesbit, Richard J. Gerling, Gregg B. Swindlehurst
Nuclear Technology | Volume 83 | Number 3 | December 1988 | Pages 344-352
Technical Paper | Fifth International Retran Meeting / Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34147
Articles are hosted by Taylor and Francis Online.
A comprehensive program by the Duke Power Company to qualify thermal-hydraulic transient analysis methods has been completed. The cornerstone of these methods is the use of the RETRAN-02/MOD003 computer code for the prediction of reactor coolant system behavior during plant transients. A RETRAN model of the Oconee nuclear station [three 2568-MW(thermal) Babcock & Wilcox reactors] was constructed and validated by comparison with data from actual plant events. The transient data base was searched to identify those events that are challenging to the predictive ability of the code and that have sufficient information available for a meaningful comparison between the code and the data. Nine events were selected, covering the following range of transient types: loss of primary-to-secondary heat transfer, excessive primary-to-secondary heat transfer [including steam generator (SG) overfeed and SG depressurization], loss of forced primary circulation, change in core reactivity, and operational transient without reactor trip. For each benchmark, a detailed review was made of all available sources of information in order to develop a complete set of initial and boundary conditions. The plant base model was modified to match the actual initial conditions, and the event was simulated using the best representation of the key boundary conditions. Four transient benchmarks are discussed in detail. The August 14, 1984, loss of all feedwater at Unit 3 demonstrates the effect of SG dryout on the primary system. The September 10, 1982, turbine bypass valve failure involves the posttrip overcooling of the primary system due to SG depressurization. The August 8, 1982, dropped control rod group event shows the effect of a rapid change in core reactivity on the plant. The July 15, 1985, main feedwater pump trip without reactor trip is characterized by a successful runback following a large mismatch between power generation and power removal. The accurate prediction of key phenomena during these and other events provides justification for the application of RETRAN to simulate the Oconee plant response to a wide variety of non-loss-of-coolant accident transients.