ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Mark F. Sulcoski, Kenneth W. Tobin, Jack S. Brenizer, Jr.
Nuclear Technology | Volume 82 | Number 3 | September 1988 | Pages 355-362
Technical Paper | Analyse | doi.org/10.13182/NT88-A34136
Articles are hosted by Taylor and Francis Online.
The University of Virginia’s real-time neutron radiography facility was characterized by measurement of the total neutron flux, gold/cadmium ratio, neutron/ gamma ratio, and the effective collimator length-to-aperture diameter (L/D) ratio. The real-time neutron imaging system and collimator were further characterized by measuring the modulation transfer function (MTF) of the system. The collimator effectiveness was measured by using the MTF to determine the “unparallelism” of the neutron beam. The MTF was also used to determine the effects of any reactor or beamport changes and to examine the effect of various system components on image quality. The computer-based image processing system allowed rapid calculation of the MTF and the collimator effectiveness. The results of these measurements, using no collimator and a simple tube collimator, demonstrated the method’s ability to determine the effective L/D ratio. The MTF measurement scheme provided a fast, reliable, and reproducible means of monitoring any changes in the real-time system, including both the neutron beam and the electronic components. The MTFs for various system components were measured using a separation technique. A parameter fN was used to give a quantitative measure of an individual system component’s performance.