ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Thomas E. Blue
Nuclear Technology | Volume 82 | Number 3 | September 1988 | Pages 304-310
Technical Paper | Radioisotopes and Isotope Separation | doi.org/10.13182/NT88-A34131
Articles are hosted by Taylor and Francis Online.
An accelerator-based 145Sm production method is described. A target of a natural samarium compound, for example, Sm2O3, is bombarded with protons in the 70-MeV energy range. The resulting nuclear reactions produce 145Eu as well as other europium isotopes that are chemically separated from the samarium target. If this separation is performed more than 15 min following the irradiation, then only 145Eu and europium isotopes with half-lives longer than the halflife of 145Eu remain in the europium fraction. Following the first separation, the separated europium undergoes radioactive decay until most of the 145Eu in the europium fraction has decayed into 145Sm. Then, a second chemical separation is performed in which the 145Sm is removed from the long-lived europium radioactivities that accompanied the 145Eu in the first separation. The result of the two chemical separations is a high-specific-activity 145Sm product with contaminations from europium radioactivities that depend on the efficiencies of the separations and the time of their performance. The 145Sm yield and purity for this production method for a high-current accelerator are compared with the yield and purity of 145Sm from a reactor-based production method for a high-flux reactor. The yield of 145Sm/day for the accelerator-based production method exceeds the yield per day for the reactor-based production method for reactor targets less than ∼1 g. For modest ratios of europium-to-samarium separation efficiencies for the first separation (∼10), the specific activity of the accelerator-produced 145Sm exceeds the specific activity of the reactor-produced 145Sm for reactor irradiation times <2 days. However, the activity of the 145Sm contaminants is larger for the accelerator-produced 145Sm than for the reactor-produced 145Sm, unless the ratio of europiumto-samarium separation efficiencies for the second separation is greater than ∼5000.