ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Geoffrey Thomas Parks, Jeffery David Lewins
Nuclear Technology | Volume 82 | Number 3 | September 1988 | Pages 267-274
Technical Paper | Fuel Cycle | doi.org/10.13182/NT88-A34128
Articles are hosted by Taylor and Francis Online.
A lumped (point) representation of the reactivity of a mixed-assembly reactor is derived from the basis of perturbation theory. This gives good agreement with exact static reactivity calculations for some simple examples. It is also compared with the simple partial reactivity model used widely in fuel management theory. A similar comparison is made for alternative representations in terms of the excess multiplication factor of the system. Although it is shown that the error in using the partial reactivity concept may be regarded as second order, the transient behavior of three simple refueling systems predicted by the point reactivity model differs markedly from previously published partial reactivity results.