ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Alex Galperin, Constantine G. Foskolos, Peter Grimm
Nuclear Technology | Volume 82 | Number 3 | September 1988 | Pages 258-266
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34127
Articles are hosted by Taylor and Francis Online.
Design of a small heating reactor based on boiling water reactor (BWR) technology necessitates major deviations from the standard fuel assembly design for a large BWR plant. The small core size results in an extremely high axial peaking factor detrimental to core performance. A spatial poison zoning technique was implemented to flatten power density and burnup profiles, which in turn allows almost complete burnable poison burnout at end of cycle. Separation of the cooling and moderating functions of the water was achieved by tightening the fuel assembly lattice with simultaneous increase of the interassembly gap. Thus, the hot-to-cold component of the total reactivity control requirement is decreased. Design of the control rod system with different compositions and geometries for various control rod banks was investigated in order to satisfy safety-related limitations on the reactivity worth of a single control rod.