ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Da Ruan
Nuclear Technology | Volume 143 | Number 2 | August 2003 | Pages 227-240
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT03-A3412
Articles are hosted by Taylor and Francis Online.
The application of fuzzy logic control (FLC) in the domain of the nuclear industry presents a tremendous challenge. The main reason for this is the public awareness of the risks of nuclear reactors and the very strict safety regulations in force for nuclear power plants. The very same regulations prevent a researcher from quickly introducing novel control methods into this field. On the other hand, the application of FLC has, despite the ominous sound of the word "fuzzy" to nuclear engineers, a number of very desirable advantages over classical control, e.g., its robustness and the capability to include human experience into the controller. In this paper an FLC for controlling the power level of a nuclear reactor is described. The study is intended to assess the applicability of FLC in this domain. The final goal is to develop an optimized and intrinsically safe controller. After reviewing some available literature on FLC in nuclear reactors, an FLC is proposed and first tested by comparing it with the classical controller of the Belgian reactor 1 (BR1). In the next step the BR1 at the Belgian Nuclear Research Center (SCK·CEN) was used as a test bed to implement a programmable logic controller-based hardware controller. The BR1 reactor is internationally regarded as a nuclear calibration reference. It therefore provides an excellent environment for this type of experiment because over the years considerable knowledge of the static and dynamic properties of the reactor has been accumulated. The project (1995-1999) aimed at investigating the added value and technical limits of FLC for nuclear reactor operations. The progress made in these experiments including closed-loop experiments are presented and discussed in this paper.