ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Alexandra Pudewills, Ekkehard Korthaus, Rainer H. Köster
Nuclear Technology | Volume 82 | Number 1 | July 1988 | Pages 71-80
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT88-A34118
Articles are hosted by Taylor and Francis Online.
The final disposal of high-level radioactive waste in a salt dome affects the thermomechanical behavior of the surrounding rock salt due to the temperature rise caused by the heat generation of the radioactive waste. The long-term safety analysis of the nuclear waste repository requires laboratory studies, in situtests, and the use of numerical calculations to predict the thermomechanical effects in the near and far fields of the repository. The near-field thermomechanical phenomena around several in situtemperature tests and a 300-m-deep conceptual borehole were studied numerically. Thermally induced closure of the boreholes and the strain-stress field distribution in the rock salt following the pressure load on the measuring probe surface and on the waste containers were determined. The calculations were performed with the commercial finite element program ADINA, taking into account the nonlinear and time-dependent behavior of the rock salt. The purpose of these investigations was a validation of the numerical methods, of the thermomechanical material parameters of rock salt, and of the model boundary conditions. The agreement between the results of the calculations and the measured values has shown that a relatively good prediction can be made of the thermomechanical effects in the near field of a waste disposal area with the numerical methods and the material laws used.