The final disposal of high-level radioactive waste in a salt dome affects the thermomechanical behavior of the surrounding rock salt due to the temperature rise caused by the heat generation of the radioactive waste. The long-term safety analysis of the nuclear waste repository requires laboratory studies, in situtests, and the use of numerical calculations to predict the thermomechanical effects in the near and far fields of the repository. The near-field thermomechanical phenomena around several in situtemperature tests and a 300-m-deep conceptual borehole were studied numerically. Thermally induced closure of the boreholes and the strain-stress field distribution in the rock salt following the pressure load on the measuring probe surface and on the waste containers were determined. The calculations were performed with the commercial finite element program ADINA, taking into account the nonlinear and time-dependent behavior of the rock salt. The purpose of these investigations was a validation of the numerical methods, of the thermomechanical material parameters of rock salt, and of the model boundary conditions. The agreement between the results of the calculations and the measured values has shown that a relatively good prediction can be made of the thermomechanical effects in the near field of a waste disposal area with the numerical methods and the material laws used.