ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Carol Braester, Roger Thunvik
Nuclear Technology | Volume 82 | Number 1 | July 1988 | Pages 60-70
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT88-A34117
Articles are hosted by Taylor and Francis Online.
A mathematical model is used to describe the migration of gas from radioactive waste repositories. Calculations are presented for rock properties characteristic of the Forsmark area. In Sweden, the repository of medium- and low-level radioactive waste is in fractured hard rock formations at a depth of ∼50 m below sea level. Chemical reactions in the stored waste produce hydrogen, which displaces the water from the fractures and migrates toward the surface, where it is finally released into the atmosphere. The lateral gas movement is considered negligible, and computations are performed under the assumption of vertical flow. Rock permeability was determined by flow tests in vertical boreholes. Calculations were performed for two cases: a constant gas flow rate corresponding to a gas production of 33 000 kg/yr and a constant pressure corresponding to a gas cushion of 0.5 m. For the considered permeability distribution, the breakthrough at the sea bottom occurred within ∼1 h. The gas-water displacement occurred mainly through high-permeability fractures, with practically no flow through the low-permeability fractures. It is concluded that the gas formed in the cavern is released into the atmosphere almost instantaneously and does not produce any significant overpressure in the cavern.