ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Brandon Rasmussen, J. Wesley Hines, Robert E. Uhrig
Nuclear Technology | Volume 143 | Number 2 | August 2003 | Pages 217-226
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT03-A3411
Articles are hosted by Taylor and Francis Online.
This work presents an empirical modeling approach combining a bilinear modeling technique, partial least squares, with the universal function approximation abilities of single hidden layer nonlinear artificial neural networks. This approach, referred to as neural network partial least squares (NNPLS), is compared to the common autoassociative artificial neural network. The NNPLS model is embedded into a graphical user interface and implemented at the Electrical Power Research Institute's Instrumentation and Control Center located at Tennessee Valley Authority's Kingston fossil power plant. Results are presented for 51 process signals with an average absolute estimation error of ~1.7% of the mean value, and sample drift detection performances are shown.