ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. K. S. Rathore, P. Munshi, R. K. Jarwal, I. D. Dhariyal
Nuclear Technology | Volume 82 | Number 2 | August 1988 | Pages 227-234
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34109
Articles are hosted by Taylor and Francis Online.
Computerized tomography (CT) has been demonstrated to be a good technique for measuring point density (void fraction) in two-phase flow systems. Recently, improvements have been suggested regarding the choice of filter functions in CT methods. These methods are essentially based on the discrete implementation of the radon inversion formulas that are widely used in the medical imaging area. Such methods do not require any a priori information regarding the distribution of the density (or the void fraction). A very simple method involving the tomographic chord-segment inversion has been developed and tested for two-phase flows having radially symmetric density distributions. This method is much simpler and consumes less CPU time than more general methods of tomographic reconstruction. For test functions, the reconstructed density distributions are almost exact. For air/water bubbly flow data, the reconstructed values have a maximum deviation of ±0.03 g/cm3. The range of investigation of the air/water flow data was 0.6 to 0.9 g/cm3, i.e., a void fraction range of 40 to 10%. These results are comparable to the results obtained by the more general methods based on the radon inversion formulas.