ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Ulrich Hesse
Nuclear Technology | Volume 82 | Number 2 | August 1988 | Pages 173-186
Technical Paper | Fuel Cycle | doi.org/10.13182/NT88-A34106
Articles are hosted by Taylor and Francis Online.
Reliable prediction of the characteristics of irradiated light water reactor fuels (e.g., afterheat power, neutron and gamma radiation sources, final uranium and plutonium contents) is needed for many aspects of the nuclear fuel cycle. Two main problems must be solved: the simulation of all isotopic nuclear reactions and the simulation of neutron fluxes setting the reactions in motion. In state-of-the-art computer techniques, a combination of specialized codes for lattice cell and burnup calculations is preferred to solve these cross-linked problems in time or burnup step approximation. In the program system OREST, developed for official and commercial tasks in the Federal Republic of Germany nuclear fuel cycle, the well-known codes HAMMER and ORIGEN are directly coupled with a fuel rod temperature module. Starting with a zero-dimensional burnup code such as ORIGEN, the importance of one- and more-dimensional neutron flux calculations in the field of isotope generation and depletion calculation is shown. OREST results are compared with measured isotope concentrations of depleted uranium dioxide samples and of mixed oxide (MOX) rods irradiated in different assembly positions. In addition, published results from two lattice cell burnup program systems are shown. Currently, ORIGEN (1973 version) is applied by many users in a stand-alone mode. The achievable accuracies are discussed. Only a few measurements of irradiated MOX fuels have been available. Considering the actual projects for reprocessing and recycling of nuclear fuels, further and fully documented isotope analyses are needed.