ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Michel Lucas
Nuclear Technology | Volume 82 | Number 2 | August 1988 | Pages 157-161
Technical Paper | Nuclear Safety | doi.org/10.13182/NT82-157
Articles are hosted by Taylor and Francis Online.
Measurements were made of I2 formed when aqueous cesium iodide (CsI) solutions were exposed to two temperatures, 43 and 95°C, with irradiation. Iodine partition coefficients were obtained from the experiments. The parameters varied were dose, CsI concentration, and Cs2CO3 concentration, in the presence of air-carbon dioxide and air-carbon dioxide-hydrogen mixtures, to provide information to calculate the form in which iodine released from fuel as CsI in a reactor accident might reach the environment. In a series of experiments, a two-compartment cell was used to trap the gaseous iodine produced. In this case, it was found that the quantity of gaseous iodine produced increased approximately linearly with the dose (at the dose rate used).