ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yoshiyuki Kataoka, Hiroaki Suzuki, Michio Murase, Isao Sumida, Tetsuo Horiuchi, Minoru Miki
Nuclear Technology | Volume 82 | Number 2 | August 1988 | Pages 147-156
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34103
Articles are hosted by Taylor and Francis Online.
A natural circulation boiling water reactor (BWR) with a rated capacity of 600 MW(electric) has been conceptually designed for small- and medium-sized light water reactors. The components and systems in the reactor are simplified by eliminating pumped recirculation systems and pumped emergency core cooling systems. Consequently, the volume of the reactor building is ∼50% of that for current BWRs with the same rated capacity; the construction period is also shorter. Its thermal-hydraulic characteristics, critical power ratio (CPR) and flow stability at steady state, decrease in the minimum CPR (ΔMCPR) at transients, and the two-phase mixture level in the reactor pressure vessel (RPV) during accidents are investigated. The 8 × 8 fuel bundles with 3.1-m active lengths are used to achieve high seismic resistance and good thermal-hydraulic characteristics. Operation pressure of 7.0 MPa and volumetric power density of 34.2 kW/ℓ are determined from the CPR and flow stability limitations. The maximum ΔMCPR appears at load rejection transient and is <0.05. The CPR under normal operation is >1.3, which is a sufficient margin for the limitation value of 1.12. The two-phase mixture level in the RPV during an accident does not decrease to lower than the top of the core; the core uncovery and heatup of fuel cladding would not occur during any loss-of-coolant accident.