ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Kotaro Nakada, Kazumi Miyagi, Norihiko Handa, Sadao Hattori
Nuclear Technology | Volume 82 | Number 2 | August 1988 | Pages 132-146
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34102
Articles are hosted by Taylor and Francis Online.
Taking the decay heat removal system of a liquid-metal fast breeder reactor (LMFBR) as an example, a new reliability analysis method has been developed that can estimate how a failure occurring in a subsystem of a redundant system proliferates to another subsystem and how the independence of the redundant system is gradually lost. The Monte Carlo method is employed in the state transition representation. Environment changes evaluated from physical parameters, which correspond to failure time and to time- and sequence-dependent failure rates, are used to evaluate the stress-strength model. The failure rates derived are used to identify subsequent sequences. As a result of applying this technique to the decay heat removal operation of an LMFBR, a more realistic value of the unreliability has been obtained in a reasonable computation time, and the validity of this technique has been confirmed. The investigation of the interaction between the system and the pipe in the decay heat removal system has revealed that the influence is small under conditions set for this study.