ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Kotaro Nakada, Kazumi Miyagi, Norihiko Handa, Sadao Hattori
Nuclear Technology | Volume 82 | Number 2 | August 1988 | Pages 132-146
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34102
Articles are hosted by Taylor and Francis Online.
Taking the decay heat removal system of a liquid-metal fast breeder reactor (LMFBR) as an example, a new reliability analysis method has been developed that can estimate how a failure occurring in a subsystem of a redundant system proliferates to another subsystem and how the independence of the redundant system is gradually lost. The Monte Carlo method is employed in the state transition representation. Environment changes evaluated from physical parameters, which correspond to failure time and to time- and sequence-dependent failure rates, are used to evaluate the stress-strength model. The failure rates derived are used to identify subsequent sequences. As a result of applying this technique to the decay heat removal operation of an LMFBR, a more realistic value of the unreliability has been obtained in a reasonable computation time, and the validity of this technique has been confirmed. The investigation of the interaction between the system and the pipe in the decay heat removal system has revealed that the influence is small under conditions set for this study.