ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S. Jordan, W. Cherdron, Jean-Claude Malet, Roger Rzekiecki, Yoshiaki Himeno
Nuclear Technology | Volume 81 | Number 2 | May 1988 | Pages 183-192
Technical Paper | Nuclear Aerosol Science / Nuclear Safety | doi.org/10.13182/NT88-A34091
Articles are hosted by Taylor and Francis Online.
A tripartite consortium DEBENE (Deutschland-Belgium-Netherlands), Japan, and France studied the sodium evaporation process of aerosols in a sodium fire. In an inert atmosphere, experimental and theoretical condensation rates were compared and indicated sodium hydride (NaH) to be the foreign nucleus for mist formation. In a normal atmosphere, the physicochemical characteristics of the aerosols produced by a sodium fire and their evolution in containment or in the environment were determined; models enabling the various countries to achieve harmonious results were derived. The proper functioning of the components, guaranteeing perfect operation during and after a sodium fire accident, was tested.