ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
M. D. Mathew, S. latha, G. Sasikala, S. L. Mannan, P. Rodriguez
Nuclear Technology | Volume 81 | Number 1 | April 1988 | Pages 114-121
Technical Paper | Material | doi.org/10.13182/NT88-A34083
Articles are hosted by Taylor and Francis Online.
The creep properties of three heats of nuclear-grade Type 316 stainless steel have been studied at temperatures of 823, 873, and 923 K. Creep tests have been carried out over a wide range of stresses that produced rupture times varying from a few days to ∼10yr. Log-log plots of stress versus rupture life were linear at 823 K, while a rapid decrease in stress to rupture was observed at longer lives at 923 K. A power law relationship indicative of dislocation creep was found between steady-state creep rate and applied stress. The variation of rupture ductility with rupture life at 823 K exhibited a minimum. At other temperatures, a peak in ductility was observed. Pronounced heat-to-heat variations have been observed in the creep-rupture properties at all the test conditions. The variations have been attributed to differences in the chemical composition and in the grain size of the material. A comparison of the results with the American Society of Mechanical Engineers design criteria for time-dependent deformation is also presented.