ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
S. Mostafa Ghiaasiaan, A. Telal Wassel, Murthy S. Divakaruni
Nuclear Technology | Volume 81 | Number 1 | April 1988 | Pages 13-27
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34075
Articles are hosted by Taylor and Francis Online.
An engineering model was developed to simulate the thermal-hydraulic phenomena in pressurized water reactor cores during bottom reflooding. The model couples the fluid thermal hydraulics and radial heat transfer in the fuel rods. The system dynamics were formulated in terms of a set of ordinary differential equations, which were integrated using the Gear integration package. A dynamic nodal scheme, which moves with the quench-front location, was utilized to predict the fuel rod temperatures. Model predictions and comparisons with full-scale experiments are provided, and show good agreement with the FLECHT-SEASET and Slab Core Test Facility data. The proposed methodology was found to be computationally fast when compared with previous approaches, and can be readily integrated with other modules to simulate the complete reactor coolant system.