ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—July through September
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from July through September 2024.
Stay tuned for the top stories from the rest of the past year.
Randy L. Simmons, Niel D. Jones, Frank D. Popa, Donald E. Mueller, James E. Pritchett
Nuclear Technology | Volume 80 | Number 3 | March 1988 | Pages 343-348
Technical Paper | Fission Reactor | doi.org/10.13182/NT88-A34058
Articles are hosted by Taylor and Francis Online.
The design advantages achievable from the use of zirconium diboride (ZrB2) integral fuel burnable absorbers (IFBAs) in two- and three-loop pressurized water reactor (PWR) cores are examined. The ZrB2 IFBAs were designed and have been extensively tested for use in PWRs. Two fuel loading patterns that utilize IFBAs are analyzed: (a) a three-loop core with an 18-month cycle, very low radial leakage loading pattern, and reduced vessel fluence concerns; and (b) a two-loop core with an annual cycle, very low radial leakage loading pattern, and natural uranium axial blankets (low axial leakage). Both designs demonstrate the versatility of IFBAs in difficult fuel loading patterns. Both designs demonstrate well-behaved radial and axial power peaking factors for annual (two-loop core) and 18-month (three-loop core) cycles. The ZrB2 IFBAs also provide added flexibility in the placement of fresh fuel. This flexibility can improve shutdown margin by placing fresh fuel under control rod locations and can improve fuel cycle cost. Neither design would have been possible with discrete burnable absorbers. By analyzing the two very different designs, it can be seen that ZrB2 IFBAs can be used in tightly constrained fuel loading patterns and will provide added flexibility and/or fuel cycle cost savings in future fuel management strategies.