ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Tina J. Tanaka, Steven P. Nowlen, Kofi Korsah, Richard T. Wood, Christina E. Antonescu
Nuclear Technology | Volume 143 | Number 2 | August 2003 | Pages 152-160
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT03-A3405
Articles are hosted by Taylor and Francis Online.
Smoke can cause interruptions and upsets in active electronics. Because nuclear power plants are replacing analog with digital instrumentation and control systems, qualification guidelines for new systems are being reviewed for severe environments such as smoke and electromagnetic interference. Active digital systems, individual components, and active circuits have been exposed to smoke in a program sponsored by the U.S. Nuclear Regulatory Commission. The circuits and systems were all monitored during the smoke exposure, indicating any immediate effects of the smoke. The results of previous smoke exposure studies have been reported in various publications. The major immediate effect of smoke has been to increase leakage currents and to cause momentary upsets and failures in digital systems. This paper presents new results from conformal coatings, memory chips, and hard drive tests.The best conformal coatings were found to be polyurethane, parylene, and acrylic (when applied by dipping). Conformal coatings can reduce smoke-induced leakage currents and protect against metal loss through corrosion. However conformal coatings are typically flammable, so they do increase material flammability. Some of the low-voltage biased memory chips failed during a combination of high smoke and high humidity. Typically, smoke along with heat and humidity is expected during fire, rather than smoke alone. Thus, due to high sensitivity of digital circuits to heat and humidity, it is hypothesized that the impact of smoke may be secondary.Low-voltage (3.3-V) static random-access memory (SRAMs) were found to be the most vulnerable to smoke. Higher bias voltages decrease the likelihood of failure. Erasable programmable read-only memory (EPROMs) and nonvolatile SRAMs were very smoke tolerant. Failures of the SRAMs occurred when two conditions were present: high density of smoke and high humidity. As the high humidity was present for only part of the test, the failures were intermittent. All of the chips that failed during the test recovered after enough venting.Hard disks were tested in severe environments but did not fail during the 2 h of monitoring.While the results of the tests documented in this report confirm that digital circuits can indeed be vulnerable to smoke, there is currently no practical, repeatable testing methodology, so it is not feasible to assess smoke susceptibility as part of environmental qualification. As a result, the most reasonable approach to minimizing smoke susceptibility is to employ design, implementation, and procedural practices that can reduce the possibility of smoke exposure and enhance smoke tolerance. Traditional approaches to mitigate its effects in digital safety instrumentation and control, such as redundancy, separation, defense in depth, as well as adherence to standards (e.g., the Institute of Electrical and Electronics Engineers' IEEE 384) and the Code of Federal Regulations Appendix R of 10 CFR 50, should continue to be applied.