ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Munenari Yamamoto, Koichi Sakurada, Hiroshi Mizuta, Kakuji Makino
Nuclear Technology | Volume 80 | Number 2 | February 1988 | Pages 240-249
Technical Paper | Advanced Light Water Reactor / Fission Reactor | doi.org/10.13182/NT88-A34048
Articles are hosted by Taylor and Francis Online.
The HELIOS.HX code has been developed for the design study of high conversion light water reactor (HCL WR) lattices. Analysis of the PROTEUS critical experiments at the Swiss Federal Institute for Reactor Research has been carried out as the first step toward validation of the HELIOS.HX code, and indications are that the accuracy may be at a higher or comparable level compared to that of WIMS-D, EPRI-CPM, and SRAC. In addition, comparisons with Monte Carlo calculations have also been performed for an HCLWR fuel assembly benchmark problem, showing that the accuracy is passable in the prediction of important nuclear characteristics, thereby indicating the validity of various approximations involved in the physics methods. These numerical results indicate that the code has basic potential as a tool for HCLWR lattice analysis, but covers only limited HCLWR lattice conditions.