ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Peter Burgsmüller, Andreas Jacobi, Jr., Jean-François Jaeger, Max J. Kläntschi, Walter Seifritz, François Vuilleumier, Ferdinand Wegmann
Nuclear Technology | Volume 79 | Number 2 | November 1987 | Pages 167-174
Technical Paper | Nuclear Power Plants for Generation of Heat / Fission Reactor | doi.org/10.13182/NT87-A34034
Articles are hosted by Taylor and Francis Online.
With fossil fuel running out in the foreseeable future, it is essential to develop substitution strategies. The heat market in industrial countries in the Northern Hemisphere has two peaks. The dominant one occurs at ∼90° C and is due to the energy demand for space heating and warm water production. A smaller peak, mainly for metallurgical processes, occurs at ∼1300°C. From thermodynamics considerations, using the high flame temperature of fossil fuels—or electricity—to supply the lower temperature range is obviously wasteful. On the other hand, contemporary light water reactor (LWR) technology makes it feasible to provide the space heating sector with hot water in a district heating network. Basically, existing reactor systems are adequate for this. Some 40 to 50% of the heat demand arises in the range below 120°C, causing a corresponding fraction of air pollution by SO2 and to a lesser extent NOx, if fossil fuels are used. When analyzing an adequate district heating system, units in the 10- to 50-MW power range are found to be most suitable for Switzerland, both with respect to network size and the democratic decision-making structure. They would have the best chance of penetrating and covering the heat market. In a cooperative effort among some members of Swiss industry and the Swiss Federal Institute for Reactor Research, a small LWR for heating purposes only is being developed. The Swiss Heating Reactor (SHR) is a small, 15-bar boiling water reactor. Its core, together with its primary heat exchanger, is located in a reactor pressure vessel and a shroud within an underground water pool. This pool acts both as an emergency heat sink and as a biological shield and has a steel-lined concrete containment. The pool is dimensioned to leave the concrete ultimately inactive. The built-in safety and reliability of the SHR are better than for conventional nuclear power reactors, and the admissible risk curve to an individual is set correspondingly low. The economic target of 100 to 120 Swiss franc/MW · h heat for consumers seems achievable.