ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Peter Burgsmüller, Andreas Jacobi, Jr., Jean-François Jaeger, Max J. Kläntschi, Walter Seifritz, François Vuilleumier, Ferdinand Wegmann
Nuclear Technology | Volume 79 | Number 2 | November 1987 | Pages 167-174
Technical Paper | Nuclear Power Plants for Generation of Heat / Fission Reactor | doi.org/10.13182/NT87-A34034
Articles are hosted by Taylor and Francis Online.
With fossil fuel running out in the foreseeable future, it is essential to develop substitution strategies. The heat market in industrial countries in the Northern Hemisphere has two peaks. The dominant one occurs at ∼90° C and is due to the energy demand for space heating and warm water production. A smaller peak, mainly for metallurgical processes, occurs at ∼1300°C. From thermodynamics considerations, using the high flame temperature of fossil fuels—or electricity—to supply the lower temperature range is obviously wasteful. On the other hand, contemporary light water reactor (LWR) technology makes it feasible to provide the space heating sector with hot water in a district heating network. Basically, existing reactor systems are adequate for this. Some 40 to 50% of the heat demand arises in the range below 120°C, causing a corresponding fraction of air pollution by SO2 and to a lesser extent NOx, if fossil fuels are used. When analyzing an adequate district heating system, units in the 10- to 50-MW power range are found to be most suitable for Switzerland, both with respect to network size and the democratic decision-making structure. They would have the best chance of penetrating and covering the heat market. In a cooperative effort among some members of Swiss industry and the Swiss Federal Institute for Reactor Research, a small LWR for heating purposes only is being developed. The Swiss Heating Reactor (SHR) is a small, 15-bar boiling water reactor. Its core, together with its primary heat exchanger, is located in a reactor pressure vessel and a shroud within an underground water pool. This pool acts both as an emergency heat sink and as a biological shield and has a steel-lined concrete containment. The pool is dimensioned to leave the concrete ultimately inactive. The built-in safety and reliability of the SHR are better than for conventional nuclear power reactors, and the admissible risk curve to an individual is set correspondingly low. The economic target of 100 to 120 Swiss franc/MW · h heat for consumers seems achievable.