ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Alexander P. Murray
Nuclear Technology | Volume 79 | Number 3 | December 1987 | Pages 359-370
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A34025
Articles are hosted by Taylor and Francis Online.
An analytical model has been derived for the chemical decontamination of boiling water reactor primary systems and components. The model results in a complex, hyperbolic function expression that simplifies to two limiting conditions: boundary layer mass transfer and oxide film reaction control. The latter produces an exponential activity decrease with time, in agreement with the presented data and a previous phenomenological model. Gross rate constants of 0.71 to 1.1 and 0.12 to 0.16 h−1 are calculated for the dilute chemical decontamination process at 121 and 95°C, respectively, with an activation energy of 20 kcal/mol. The model indicates that flow effects are relatively unimportant. Other processes should follow this model, but have different rate constants. Future decontamination efforts should incorporate field/activity measurements with time and specimen surface area measurements into the experimental plan for model verification and a better elucidation of the decontamination phenomena.