ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Alexander P. Murray
Nuclear Technology | Volume 79 | Number 3 | December 1987 | Pages 359-370
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A34025
Articles are hosted by Taylor and Francis Online.
An analytical model has been derived for the chemical decontamination of boiling water reactor primary systems and components. The model results in a complex, hyperbolic function expression that simplifies to two limiting conditions: boundary layer mass transfer and oxide film reaction control. The latter produces an exponential activity decrease with time, in agreement with the presented data and a previous phenomenological model. Gross rate constants of 0.71 to 1.1 and 0.12 to 0.16 h−1 are calculated for the dilute chemical decontamination process at 121 and 95°C, respectively, with an activation energy of 20 kcal/mol. The model indicates that flow effects are relatively unimportant. Other processes should follow this model, but have different rate constants. Future decontamination efforts should incorporate field/activity measurements with time and specimen surface area measurements into the experimental plan for model verification and a better elucidation of the decontamination phenomena.