ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Alexander P. Murray
Nuclear Technology | Volume 79 | Number 3 | December 1987 | Pages 359-370
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A34025
Articles are hosted by Taylor and Francis Online.
An analytical model has been derived for the chemical decontamination of boiling water reactor primary systems and components. The model results in a complex, hyperbolic function expression that simplifies to two limiting conditions: boundary layer mass transfer and oxide film reaction control. The latter produces an exponential activity decrease with time, in agreement with the presented data and a previous phenomenological model. Gross rate constants of 0.71 to 1.1 and 0.12 to 0.16 h−1 are calculated for the dilute chemical decontamination process at 121 and 95°C, respectively, with an activation energy of 20 kcal/mol. The model indicates that flow effects are relatively unimportant. Other processes should follow this model, but have different rate constants. Future decontamination efforts should incorporate field/activity measurements with time and specimen surface area measurements into the experimental plan for model verification and a better elucidation of the decontamination phenomena.