ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Hans Wanner
Nuclear Technology | Volume 79 | Number 3 | December 1987 | Pages 338-347
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A34023
Articles are hosted by Taylor and Francis Online.
Based on available experimental data on the interaction of sodium bentonite and groundwater, a model has been developed that represents a means of extrapolation from laboratory data to the conditions in compacted bentonite. The basic reactions between sodium bentonite and groundwater are described by an ion exchange model for sodium, potassium, magnesium, and calcium. The model also assumes equilibrium with calcite and quartz. The calculations are carried out for two types of granitic groundwater: the Swiss reference groundwater (ionic strength I = 0.24 M) and the standard Swedish groundwater (I = 0.0044 M). It is calculated that the pore water of compacted sodium bentonite will have a pH of 9.7 and a carbonate activity of 8 × 10−4 M if the dry bentonite is saturated with Swiss reference groundwater; it will have a pH near 10.2 and {} = 8 × 10−3 M for standard Swedish groundwater. The long-term situation, which is important for nuclear waste disposal, is modeled by the assumption that the near field of a radioactive waste repository behaves like a mixing tank. It is calculated that sodium bentonite will be slowly converted to calcium bentonite over a long period. The model is used to calculate short- and long-term maximum solubilities of thorium, uranium, neptunium, plutonium, americium, and technetium in the near-field pore water of a potential Swiss nuclear waste repository. The redox potential in the near field is assumed to be controlled by the corrosion products of the iron canister. Using a conservative chemical thermodynamic data base, the maximum solubility of thorium is calculated to be between 2 × 10−10 and 10−8 M, that of uranium between 3 × 10−11 and 3 × 10−8 M, that of neptunium between 10−9 and 10−5 M, that of plutonium between 3 × 10−10 and 4 × 10−5 M, that of americium between 2 × 10−7 and 5 × 10−5 M, and that of technetium will not exceed 10−9 M.