ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Tatsuhiko Uda, Yoshihiro Ozawa, Hajime Iba
Nuclear Technology | Volume 79 | Number 3 | December 1987 | Pages 328-337
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A34022
Articles are hosted by Taylor and Francis Online.
Melt refining as a means of uranium decontamination of metallic wastes by electroslag refining was examined. Electroslag refining was selected because it is easy to scale up to the necessary industrial levels. Various thicknesses of iron and aluminum cylinders with uranium concentrations close to actual metallic wastes were melted by adding effective fluxes for decontamination. Thin-walled iron and aluminum cylinders with a fill ratio (electrode/mold cross-section ratio) of 0.05 could be melted, and the energy efficiency obtained was 16 to 25%. The ingot uranium concentration of the iron obtained was 0.01 to 0.015 ppm, which was close to the contamination level of the as-received specimen, while for aluminum it was 3 to 5 ppm, which was a few times higher than the as-received specimen contamination level of ∼0.9ppm. To melt a thin aluminum cylinder in a steady state, with this fill ratio of 0.05, instantaneous electrode driving response control was desired. Electroslag refining gave better decontamination and energy economization results than by a resistance furnace.