ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Mo-Chen Hsu
Nuclear Technology | Volume 79 | Number 3 | December 1987 | Pages 274-283
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A34017
Articles are hosted by Taylor and Francis Online.
The time series modeling approach is introduced to estimate the prompt-neutron decay constant. Neutron flux noise data of three fuel cycles of a high flux isotope reactor are analyzed. The noise data detected from an ionization chamber outside the reactor core surrounded by a beryllium reflector were recorded at full-power operation. The decay constant corresponding to a rounded-off corner break frequency can be estimated from the characteristic roots of adequate autoregressive moving average models. This implicit characteristic identification is one of the advantages of off-line modeling analysis. The estimated neutron lifetime in the beginning of fuel cycle is 38 µs (expected value = 35 µs). The estimated lifetime near the end of cycle is 66 µs (expected value = 70 µs).