ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Aaron Barkatt, Karen A. Michael, William Sousanpour, Alisa Barkatt, L. Miguel Penafiel, Pedro B. Macedo, Herbert G. Sutter
Nuclear Technology | Volume 78 | Number 1 | July 1987 | Pages 75-82
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A34011
Articles are hosted by Taylor and Francis Online.
A new family of ion exchange and sorption media has been developed and applied for the removal of radioactive contaminants from aqueous streams in nuclear power plant operations. The general principle in the development of these materials is optimization of their selectivity for species that significantly contribute to the radioactivity of these streams (e.g., cesium, iodine, and cobalt) in the presence of a large excess of other ions (e.g., sodium, potassium, magnesium, calcium, chlorine, and SO4). This results in improved effective capacity and service lifetime of these new materials compared with the performance of conventional broad-spectrum ion exchange resins. Other advantages include higher decontamination factors, shorter contact times, greater stability, and convenience of disposals. Examples of the new materials include Durasil 10, a high-capacity ion exchange medium for cesium and strontium, and Durasil 60 and 70, which are highly effective in the removal of iodine and cobalt, respectively. The performance of these new media has been characterized in laboratory studies, engineering-scale demonstration tests, and 1 to 2 yr of experience with the Durasil media in routine waste-water treatment in several nuclear power plants.