ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Keshav Chander, Bharatkumar N. Patil, Jayshree V. Kamat, Nandakumar B. Khedekar, Remani B. Manolkar, Surendranath G. Marathe
Nuclear Technology | Volume 78 | Number 1 | July 1987 | Pages 69-74
Technical Paper | Chemical Processing | doi.org/10.13182/NT87-A34010
Articles are hosted by Taylor and Francis Online.
Direct dissolution of uranium carbide was found to be very effective when it was refluxed with an 18 M H2SO4‾15 M HNO3 (1:1) mixture. Clear solutions could be obtained within 1 h. Uranium-plutonium carbide, as well as PuO2 could also be dissolved in 1 to 2 h in the same way. Other nuclear materials, UO2 + C and UO2 + PuO2 + C, needed longer duration for complete dissolution. When the proportion of H2SO4 in the H2SO4‾HNO3 mixture was increased to 2:1, these materials also dissolved within 2 h. Quantitativeness of the dissolution was checked by the potentiometric determination of uranium and/or plutonium contents in these solutions. The results were in good agreement (±0.5%) when compared with the values obtained by the well-established dissolution method. During the fabrication of fuel (plutonium-rich mixed carbide) for the fast breeder test reactor, a large number of fuel samples were analyzed by using the above method of dissolution for the chemical quality control. Presuming the possibility of formation of small amounts of oxalic and mellitic (benzene hexacarboxylic) acids during the process of dissolution of carbides, the effect of the presence of these organic species on the potentiometric determination of uranium and plutonium was studied.