ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Alfred W. Reed, Herbert Meister, Daniel J. Sasmor
Nuclear Technology | Volume 78 | Number 1 | July 1987 | Pages 54-61
Technical Paper | Nuclear Safety | doi.org/10.13182/NT87-A34008
Articles are hosted by Taylor and Francis Online.
One of the elements used to compute the dryout heat flux of a debris bed is the capillary pressure/saturation curve. This relationship describes the pressure difference between liquid and vapor phases in a porous bed as a function of saturation. It is used in the calculation of the liquid and vapor pressure drops in the debris and in the calculation of channel depth. The first complete correlation of capillary pressure/saturation data was reported in 1941 by Leverett. Leverett demonstrated that the data for unconsolidated sand in the 45- to 180-µm range could be non-dimensionalized using the liquid surface tension, bed permeability, and void fraction. At the time, the primary interest was in geologic materials and further work on unconsolidated particulate was limited. The presented measurements of capillary pressure are designed to check the range of validity of the Leverett correlation. For beds with narrow particle size distributions, the Leverett correlation is found to be adequate. For beds composed of broad size distributions, the capillary pressure curve changed significantly.