ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
R. Muralidharan, V. K. Chexal
Nuclear Technology | Volume 78 | Number 1 | July 1987 | Pages 13-23
Technical Paper | Nuclear Safety | doi.org/10.13182/NT87-A34004
Articles are hosted by Taylor and Francis Online.
The emergency core cooling systems (ECCSs) at a reactor site have a dual power source for their assured operation if and when needed. The normal power source is the off-site ac power. In the unlikely event of loss of all off-site power, emergency diesel generators (DGs) are the backup ac source. Thus, there is an incentive to ensure that the reliability of DGs at operating plants is maintained at an acceptable level. A potential contributor to observed diesel degradation is the fast start and loading interval (∼10 s) demanded of the emergency DGs. Such fast start intervals result from the performance required of the ECCS to meet the U.S. Nuclear Regulatory Commission (NRC) acceptance criteria for a hypothetical large-break loss-of-coolant accident (LOCA) (design basis accident) concurrent with a loss of off-site power. The guidelines established by the NRC for the ECCS performance evaluation, which are stated in Appendix K of 10CFR50, have several built-in arbitrary conservatisms. Recently, the NRC outlined in SECY-83-472 a new approach for performing ECCS analysis and has given approval to General Electric to use this new approach in their SAFER/GESTR LOCA analysis computer code. The sensitivity of peak cladding temperature (PCT) is determined using the new realistic LOCA analysis approach for various DG start durations. A quantitative assessment of the various diesel start durations using NRC licensing assumptions was made to determine the impact on the PCT. The results for a boiling water reactor (BWR/6) show that when using licensing assumptions and the SAFER/GESTR code, the PCT that is determined during a design basis LOCA for the present 10-s DG start criteria is ∼593°C. This is far below the prescribed limit of 1204.4°C. The results also show that the PCT varies only a small amount with diesel start times of 10 to 30 s. Thus, the diesel start time for the class of reactors analyzed in this study could be changed from 10 to 30 s without the loss of any LOCA safety margin. The results further show that for an 871.1°C PCT, which is the current NRC-approved SAFER application PCT limit, the DG start time can be 70 s (compared to the present specified 10 s). The DG start time could be increased to 118 s when and if, in the future, the SAFER code is qualified to a PCT limit of 1204.4°C for licensing calculations. This work is of interest to nuclear utilities as a means of increasing operational flexibility and to help improve diesel reliability.