ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Masatoshi Kureta, Hajime Akimoto
Nuclear Technology | Volume 143 | Number 1 | July 2003 | Pages 89-100
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT143-89
Articles are hosted by Taylor and Francis Online.
Critical power experiments were carried out, and the critical power correlation for axially uniformly heated tight bundles has been derived based on the present experimental data and data sets measured by the Bettis Atomic Power Laboratory. The shape of the test section simulates the fuel assembly of the reduced-moderation water reactor (RMWR), which is a water-cooled breeder reactor with a core of the tight triangular fuel rod arrangement. The obtained correlation covers the following conditions: channel geometry (triangular arrangement bundle of 7 to 20 rods, 6.6 to 12.3 mm in rod diameter, 1.0- to 2.3-mm gap between rods, 1.37 to 1.8 m in heated length), mass velocity of 100 to 2500 kg/(m2s), inlet quality of -0.2 to 0, pressure of 2 to 8.5 MPa, and radial peaking factor of 0.98 to 1.5, which include uniform, center-peak, and liner transverse heat flux distribution data. An excellent agreement was obtained between the developed correlation and data (371 points) within an error of ±4.6%.