ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Morris F. Osborne, Jack L. Collins, Richard A. Lorenz
Nuclear Technology | Volume 78 | Number 2 | August 1987 | Pages 157-169
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT87-A33994
Articles are hosted by Taylor and Francis Online.
Fission product release from fully irradiated light water reactor fuel under accident conditions and the chemical forms and behavior of the released material have been studied at high temperatures. This work has emphasized release from commercial fuels, but tracer-level tests using specific fission product species have been used in efforts to clarify chemical behavior. The specimens were heated in an induction furnace in flowing steam at temperatures of 1700 to 2300 K. The fractional releases of krypton, iodine, and cesium increased with temperature, reaching maxima of nearly 60% in 20 min. The release of tellurium varied strongly with the extent of cladding oxidation and approached that of cesium for completely oxidized cladding. In addition to some structural material, the major chemical forms in the furnace effluent appeared to include CsI, CsOH, silver, antimony, and tellurides of cesium and tin. The fractional releases of the volatile fission products correlated with the amount of fuel porosity, and the masses of aerosol collected increased with test temperature and oxidation. Comparison of our results with several fission product release models showed agreement ranging from good to poor.