ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
John F. Geldard, Adolph L. Beyerlein, Houn-Lin Chiu
Nuclear Technology | Volume 78 | Number 2 | August 1987 | Pages 151-156
Technical Paper | Chemical Processing | doi.org/10.13182/NT87-A33993
Articles are hosted by Taylor and Francis Online.
The mathematical basis for a computer code PUNE (Plutonium-Uranium-Non-Equilibrium) is described. The code simulates the steady-state concentration profiles of solvent extraction contactors used in the Purex process under conditions where material transfer between phases deviates from the equilibrium limit. The deviation is accounted for by a mass transfer area characteristic of the operating conditions of a contactor, and a mass transfer coefficient for the chemical species of interest. In the limit of infinite mass transfer rate, PUNE gives the same results as other codes that calculate equilibrium profiles. For 1A and IE contactors, the computational times are reduced between two- and fivefold over times required by other codes that generate the steady-state profiles via transient state conditions. For 1B or partitioning contactors, the reduction in time can be more than 20-fold. Since there is no loss of accuracy in these calculations, PUNE represents an important advance in the determination of steady-state profiles, especially for 1B contactors because it is with these that the greatest computational difficulties are encountered.