ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Roger D. Spence, Anthony L. Wright
Nuclear Technology | Volume 77 | Number 2 | May 1987 | Pages 150-160
Technical Paper | Nuclear Safety | doi.org/10.13182/NT87-A33980
Articles are hosted by Taylor and Francis Online.
Including fission product vapor interactions with aerosols in reactor accident calculations can significantly alter the predicted consequences of a given accident. For example, a high-velocity, short residence time accident can transport significant amounts of tellurium outside the reactor vessel on the aerosols rather than having the tellurium reacted on the vessel’s metal surfaces. In another scenario, a relatively stagnant situation allows equilibration of the vapor/aerosol interactions and deposition of the aerosols inside the core region. Consequently, most of the fission product vapors remain in the core region with the deposited aerosols. The sorption isotherms of CsOH-Ag, CsOH-Cr2O3, and CsI-Cr2O3 can be represented by modified Freundlich isotherm expressions. In addition, CsOH vapor interacts extremely with the iron species under accident conditions such that 0.6 wt% FeO in the aerosol can remove 10 to 15 wt% of the CsOH emitted in an accident.