ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
George Yadigaroglu, Hector A. Munera
Nuclear Technology | Volume 77 | Number 2 | May 1987 | Pages 125-149
Critical Review | Nuclear Safety | doi.org/10.13182/NT87-A33979
Articles are hosted by Taylor and Francis Online.
The physical processes taking place during the dispersion of releases of pollutants into the atmosphere and the hydrosphere (surface as well as groundwaters) can be mathematically modeled. The analytical methods available for tracking pollutants in the atmosphere include local and mesoscale models (mostly based on Gaussian-plume dispersion), as well as regional and global models, where either more sophisticated numerical techniques or “box” modeling is used. Various removal processes such as physicochemical transformations, wet and dry deposition, resuspension, and plume rise affect aerial dispersion. The mechanisms of transport in surface waters include mass transport by the waters themselves, dispersion, sedimentation, boundary exchange processes, and various forms of depletion. The models vary according to the type of surface waters considered: rivers, estuaries and tidal rivers, small lakes, open-coast water bodies, etc. Regarding groundwater transport, one must distinguish between saturated and unsaturated zones and homogeneous or nonhomogeneous media. Numerous references refer the reader to details and to state-of-the-art treatment of the subjects.