ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Gerhard Karsten
Nuclear Technology | Volume 77 | Number 3 | June 1987 | Pages 349-353
Technical Note | Material | doi.org/10.13182/NT87-A33975
Articles are hosted by Taylor and Francis Online.
The application of image-analytical, indenting, and quantitative scanning electron microscopic methods on irradiated uranium and mixed-oxide fuel materials yields nonlinear thermodynamic operational data. Any oxide fuel material from a specific fabrication process undergoes its own means of transformation toward thermodynamic equilibrium through structural metamorphoses by irreversible processes far from equilibrium. The related dissipation energies vary with burnup and temperature because of the variable capability of energy storage, due to specific structural reactions on nuclear impacts. This fact leads to a large variety of operational material properties. Preferable operational hyperelasticity and subsequent viscoelasticity can be predetermined by intentional selected kinetic processing during fuel fabrication.